ISSN: 0970-2091 A web of Science Journal

Isolation and characterization of *Enterobacter* from egg yolk

J.K. Pallavi*^b, M. Soundarya^a, Kolluru Viswanatha Chaitanya^b and M. Sukumar^a

 ^aCenter for Food Technology, Anna University, Chennai–600025 (India)
^bDepartment of Microbiology and Food Science Technology, GITAM Institute of Science, GITAM deemed to be University, Visakhapatnam–530045 (India)
* Corresponding Author : Dr. JK Pallavi Orcid ID 0000-0003-4903-9523 Email: pallavijangala@gmail.com

Abstract

The present study describes different approaches that lead to the identification of Enterobacter from commercially sold eggs in Chennai, Tamil Nadu, India. Morphological and biochemical methods were applied to categorize a Gram negative, catalase positive, oxidase negative, ampicillin and cephalosporin resistant, erythromycin susceptible, tetracycline mildly resistant isolate into either Bacillus or Enterobacter genera. DNA Sequencing was performed using the 16s rRNA primers. The resulting sequences were subjected to a BLASTn search in the NCBI database that yielded a 99% genome similarity with Enterobacter xiangfangensis and Enterobacter hormaechei. Further, on the genomic pipeline of Center for Genomic Epidemiology (CGE), the bacterium was identified as Enterobacter hormaechei. A bacterial smear of the same was prepared and it's m/z values were generated by subjecting to MALDI-TOF to identify its genus and species as Enterobacter cloacae and Enterobacter kobei as the first and second best hit respectively. The study explores suitability of the diverse methods of bacterial identification and highlights the need of a consensus approach.

Eggs are high nutrition food as they consist of proteins, essential amino acids, vitamin A, riboflavin, folic acid, vitamin B6, and vitamin B12, minerals such as iron, calcium, phosphorus and potassium⁵. This is also the reason that they are often contaminated separately or concurrently by different enteric pathogens like *E. coli* and *Salmonella* species²¹. Increased embryo mortality, low hatchability and early chick mortality are major

determinants in the pathology of poultry production. Illness in humans is also widespread due to consumption of these microbes. The prevalence of pathogenic strains in eggs is a subject of high concern, where tolerance is dependent on the acceptable load of the organisms^{3,11}.

The egg shell and albumin act as physical and chemical barriers respectively and

therefore exhibit antimicrobial activity⁹. Despite these natural defense mechanisms, microbial contamination of eggs is rampant and leads to food poisoning in humans¹. The intensity of the food poisoning depends on the count and type of bacteria. Eggs are frequently contaminated by Gram-positive bacteria due to their greater tolerance to desiccation⁶. In order to mitigate food poisoning, it is imperative to identify the micro-organisms prevalent in the egg. In the present study, we report the incidence and prevalence of Enterobacter hormaechei in the yolk of boiled egg. Our results pose a compelling reason to streamline the process of microbial identification with special reference to emerging pathogens such as Enterobacter.

Bacterial Isolation :

Eggs were commercially sourced in Chennai, Tamil Nadu, India. Egg was hard boiled in water (50 °C) and yolk separated. Ten grams of minced egg yolk was subjected to 3 fold dilutions with sterilized distilled water and every dilution was plated over MRS Agar (Sigma Aldrich, USA). The spread plates were incubated at 37°C for 24 h. Colonies were isolated and repeatedly streaked to obtain pure cultures. Sub-culturing was done at regular intervals in nutrient broth and glycerol stock was prepared for selected streak isolates. The isolates were maintained in 20% glycerol stock solution till further use.

Gram staining :

A thin smear of the isolate was heatfixed on a clean slide. Two drops of 0.5 % crystal violet were added to the smear for 1 minute, washed with water and stained with Gram's iodine solution for 1 minute. The slide was flooded with ethanol for 30 seconds and 2 drops of 2 % safranin was added for 1 minute, rinsed again with tap water and blotted dry using a filter paper. Slide was examined under a light microscope. *Pseudomonas aeruginosa* and *Streptococcus mutans* were used as Gram negative and Gram-positive controls respectively.

Catalase test :

A drop of 3 % (v/v) H_2O_2 was placed on a clean microscopic slide and mixed thoroughly with loop-full of bacterial culture. The slide was observed to produce gas bubbles. *Pseudomonas aeruginosa* and *Streptococcus mutans* were used as a positive and negative control, respectively.

Cytochrome oxidase test :

Cytochrome oxidase strips (Sigma Aldrich, USA) were saturated with a solution of N,N-dimethyl-1,4-phenylene diamine and placed in a sterile glass slide. An overnight culture of isolate was smeared on to the strip. *Pseudomonas aeruginosa* and *Escherichia coli* were used as a positive and negative control.

Carbohydrate utilization test :

The organism was tested for utilization of 12 sugars (Lactose, Xylose, Maltose, Fructose, Dextrose, Galactose, Raffinose, Trehalose, Melibiose, Sucrose, L-Arabinose, Mannose) present in the strip (KB009A, Hi-Media). The isolate was transferred to nutrient broth and maintained till $a \ge 0.5$ O.D. was obtained according to manufacturer's protocol. Each well of the kit was then inoculated with 50 μ L of the inoculums and maintained in at $35 \pm 2^{\circ}$ C and incubated for 20 h. To understand the results, change in colour of medium was interpreted according to manufacturers' chart.

Motility test :

Vaseline was applied on the four corners of the cover slip with a toothpick. A drop of bacterial culture was placed on the centre of the cover slip and inverted over the concavity glass slide. The motility was examined by first focusing on the drop under low power objective then switched to high power objective. *Escherichia coli* and *Lactobacillus acidophilus* were used as a positive and negative control.

Temperature tolerance :

The isolate was tested with a range of temperatures, ranging from 40 °C to 80 °C to record its heat tolerance. One mL of culture was diluted with 9 mL of sterile broth in a test tube and placed in water-baths maintained at each specific temperature for a period of 1 h. The culture was brought to room temperature and then inoculated in a conical flask for 24 h. Growth of bacterial cells was enumerated by measuring absorption in a UV Spectrophotometer (OD₆₀₀). Parallelly, 1 ml was taken and spread plating was done to check the growth. For control, plating was done without thermal treatment.

Colony morphology of the isolates :

The colony morphologies of isolates such as size, surface, elevation, margin, form, colour, opacity was observed, and the results were recorded.

Antibiotic susceptibility :

Fresh overnight culture of the isolates was spread on Muller Hinton (MH) agar plates and antibiotic discs (Ampicillin - $10\mu g/disc$, tetracycline - $10\mu g/disc$, erythromycin - $10\mu g/disc$) were placed on the surface using sterile forceps. The plates were incubated at 37 °C for 24 h. The zone of inhibition was measured inclusive of the diameter (6 mm) of the discs. Results were expressed as sensitive, S (≥ 20 mm); intermediate sensitive, I (15-19 mm) and resistant, R (≤ 14 mm)¹⁷.

Growth curve :

A 1 % culture was maintained in 100 mL MRS broth under sterile conditions at 37°C for 48 h. Optical density was measured in a UV Spectrophotometer (OD₆₀₀) after a 3 h time interval.

Maintenance of isolates in glycerol stock :

In a 2 mL cryovial, 500 μ L of the overnight culture was vortexed with 500 μ L of 20 % glycerol and stored at 4 °C initially for 4 h and then in deep freezer at -20 °C. The cells were checked for revival by inoculating in MRS broth.

DNA isolation and whole genome sequencing :

Isolation of bacterial genomic DNA was performed using the CTAB method (DNeasy Qiagen kit) as per manufacturer's instructions. To amplify the V3-V4 region of 16S rDNA fragments in bacteria, a 25 µL PCR

(polymerase chain reaction) mixture was prepared using 2.5 µL of microbial DNA (5 ng/ μ L), 10.5 μ L of ReadyMixTM Taq PCR Reaction Mix (Sigma Aldrich) that included Tag DNA polymerase, dNTPs and reaction buffer, 5 µL of specific V3 Forward primer (5' CCTACGGGNBGCASCAG 3') and 5 µL of V4 Reverse primer (5' GACTACNV-GGGTATCTAATCC 3') and water to make up the volume. The thermal profile of the PCR was set to 95 °C for 3 min, 25 cycles of 95 °C for 30 s, 56 °C for 30 s and 72 °C for 45 s and a final elongation step at 72 °C for 10 min. The amplified product was checked on 1 % agarose gel and gel purification was done to remove non-specific amplifications. The PCR reaction was repeated to increase the quantity of the template region upto 50 µL. Five ng of amplified product was used for library preparation using NEBNext Ultra DNA library preparation kit. The library quantification and quality estimation were done in Agilent 2200 TapeStation and the prepared library was sequenced in Illumina HiSeq 2500 with 2 * 250 cycles chemistry. The sequenced raw data was trimmed and assembled using the Galaxy program (http://galaxyproject.org/).

MALDI-TOF :

Prior to MALDI-TOF (Matrix-Assisted Laser Desorption/Ionization - Time of Flight detector) mass spectroscopy analysis, the isolates were cultured for 24 h on nutrient agar medium at 28 °C. The cells were plated, and single colonies were allowed to grow using streak plate method. The direct transfer protocol was followed to study the mass spectrum of the isolates. A bacterial smear (approximately 0.1 mg colonies) was transferred to the MALDI target spot. After air drying the smear at room temperature $(28 \pm 2 \text{ °C})$, sample spots were overlaid with 1µL of matrix solution (10 mg/mL a-cyano-4hydroxycinnamic acid in 50% acetonitrile and 2.5% trifluoroacetic acid). Analysis was performed on Microflex LT bench-top mass spectrometer (Bruker Daltonics, USA) following manufacturer's instructions. Machine was initially calibrated using known bacterial strains Lactobacillus reuteri, Lactobacillus acidophilus, Escherichia coli, Streptococcus mutans and Pseudomonas aeruginosa. Calibration, measurement (m/z) and sample identification were achieved by the preinstalled software which runs on the basis of peptide mass fingerprint matching with Bruker taxonomy database (v 3.3.1).

In the present study, physiological, biochemical and molecular analyses were conducted to identify the organism on the basis of methods described in Bergey's Manual of Systemic Bacteriology¹³. Universal primers were used to amplify 16s rRNA of the isolated bacterium and subjected to sequencing. Bioinformatics analysis of the sequence was done using BLASTn (Basic Local Alignment Search Tool, nucleotide sequences similarity search, NCBI) and the genomic pipeline of the CGE (Center for Genomic Epidemiology) server. MALDI-TOF mass spectroscopy analysis of the isolated colonies was performed on the peptides produced from the protein digests and their respective m/z was identified through peptide mass finger printing analysis. The data obtained from the study depicts considerable differences in the results predicted by the different softwares used in the study.

Good manufacturing practices (GMP)

are obligatory practices that allow critical adherence to quality and safety of food products. Despite these compliance measures, pathogenic bacteria still enter into human food chain, causing diseases. Identification of pathogenic microorganisms is the first step towards such disease mitigation. Enterobacteriaceae are gram-negative, non-sporeforming, facultative anaerobes that ferment glucose and other sugars, reduce nitrate to nitrite, and produce catalase, except Plesiomonas, which do not produce oxidase¹⁴. Most of them are motile by virtue of peritrichous flagella. In the present study, we report the recurring presence of a single isolate in boiled egg yolks. To determine the taxa of the isolated organism, classical methods were employed by subjecting the culture to various tests as described in section 2. All the isolates were observed to be motile Gram-negative rodshaped singles, pairs, and chains in red colour under high power objective (Figure 1a). The colonies were convex, creamy white, opaque, entire, and irregularly round and rough with smooth edges (Figure 1b and 1c).

Further, the isolated bacterium was tested for its catalase activity. Catalase is an enzyme synthesized by living organisms, including bacteria that mediate the breakdown of hydrogen peroxide into oxygen and water. As H_2O_2 is formed during aerobic metabolism, microbes that are capable of growing in aerobic conditions can only liberate it. Bacteria that cannot produce catalase are strict anaerobes or facultative anaerobes such as *Streptococci*, capable of only fermenting but do not respire using oxygen²⁰. In the present study, a release of oxygen was observed as bubbles on the slide of the bacteria isolated from the egg yolk with

3% H₂O₂ confirming the isolates to be catalase positive. Cytochrome oxidase is a vital enzyme in the bacterial electron transport chain that catalyzes the oxidation of cytochrome c during the reduction of oxygen for water formation. In the present study, N, N-dimethyl-1,4phenylene diamine was used as an artificial electron donor for cytochrome c, for its oxidation by cytochrome c oxidase into a purple-coloured indophenol. The bacterial isolate upon incubation with cytochrome oxidase, remained reduced and colourless suggesting that the isolate is oxidase negative (Figure 2).

Carbohydrate fermentation is well adapted for the identification of pathogenic anaerobic bacteria. Speciation of isolated bacteria was studied by the detection of acid and gas produced due to fermentation leading to decreased pH followed by a change in colour¹². The carbohydrate fermentation study of the yolk isolate is Lactose (+), Xylose (+), Maltose (-), Fructose (+), Dextrose (-), Galactose (+), Raffinose (+), Trehalose (+), Melibiose (+), Sucrose (-), L-Arabinose (+) and Mannose (+) respectively. Temperature tolerance of the bacterium isolated from the egg yolk has been tested by exposing to a series of temperatures from 40 °C to 80 °C with duration of 24 h to 120 h. Since bacteria cannot thermoregulate, their internal temperatures are almost equal to the environmental temperature. Temperatures that are below optimum will decrease the enzyme activity, eventually slowing down the metabolism, whereas exposure of bacteria to high temperatures will lead to the denaturation of carrier proteins, enzymes and lead to cell death. A bacterial growth curve relates growth to temperature where the optimal temperature favours peak growth. In the present study, maximum growth of the bacterium isolated from the egg yolk has been observed in the temperatures ranging between 40 °C to 60 °C for 48 h to 120 h, suggesting that the bacterium might be a mesophile, capable of tolerating moderately high temperatures for long durations (Table-1).

Table-1. Growth of the organism recorded at higher temperatures. Legend "-" denotes the absence of growth, "+": denotes the slow growth and "++" denotes a rapid growth

0		1 8					
Duration		Temperature					
of incu-	40 °C	50 °C	60 °C	70 °C	80°C		
bation							
24 h	+	+	+	+	+		
48 h	++	++	++	+	+		
72 h	++	++	++	+	-		
96 h	++	++	++	-	-		
120 h	++	++	++	-	-		

The ability of the bacteria to adapt to the fluctuations in the temperatures is attributed to the lipids, chaperones and heat shock proteins that are synthesized by the bacteria during their exposure to high temperatures, which help in proper folding of proteins and prevent their denaturation².

The emergence of antibiotic resistance and its rapid spread among pathogenic bacterial isolates are considered as grave threats to the public health worldwide. During the last few decades, multidrug-resistant Gram-negative bacterial strains such as *Acinetobacter baumannii*, *E. coli*, *Klebsiella pneumoniae*, *Pseudomonas aeruginosa*, and Gram-positive methicillin-resistant

Staphylococcus aureus (MRSA) were increasingly reported in hospital settings due to extensive and inadequate dose regimen of antibiotics^{8,16}. Rapid emergence of multidrugresistant bacteria is a peril to global public health due to the very limited number of available options for antibiotics⁴. The susceptibility of isolated bacterium was assayed against 4 antibiotics cephalosporin, ampicillin, tetracycline and erythromycin. By measuring the zone of inhibition on a lawn of a pure culture, the isolated bacterium was classified to be sensitive S (≥ 20 mm) to cephalosporin and ampicillin, intermediate sensitive I (15-19 mm) to tetracycline and resistant R (\leq 14 mm) to erythromycin (Fig. 3) and Table-2).

In the antibiotic susceptibility study, the isolates were seen susceptible to erythromycin and resistant to cephalosporin, ampicillin and tetracycline. This could be due to the production of carbapenamase with versatile hydrolytic capabilities as observed in Gram-negative multidrug-resistant bacteria. Carbapenamases are frequently reported in Enterobacteriaceae and are involved in the inhibition of β -lactam antibiotics⁷. Ever since the identification of carbapenamase genes IMP-1 in Pseudomonas aeruginosa, OXA-23 in Acinetobacter baumannii and KPC-1 in Klebsiella pneumoniae it has been identified that the global distribution of the drug-resistant carbapenamase genes is a grave challenge18.

Genome of the isolate was studied for classification and species identification. The 16S rRNA gene is a powerful tool to achieve this because it consists of highly conserved nucleotide sequences, interspersed with

(609)

Table-2. Zone of Inhibition visualized on the bacterial lawn with various concentrations of antibiotics

Zone of Inhibition for different antibiotics

Table-3. Sequence similarity data matrix from BLASTn(NCBI) with strains of *Enterobacter* hormaechei and *Enterobacter xiangfangensis*

	er una Bitter					
Description Strain Number of the	Maximum	Total	Query	E- value	Percentage	Accession
Enterobacter hormaechei 16S	Score	score	Cover		Identity	
ribosomal RNA gene, partial sequence						
0173	1277	1277	99%	0.0	98.44	KP236303.1
LMA108	1131	1131	87%	0.0	98.57	KX856282.1
LMA123	776	776	60%	0.0	98.52	KX856297.1
HPCAQ10CR8	736	736	47%	0.0	99.27	JQ512965.1
DescriptionStrain Number of the	Maximum	Total	Query	E- value	Percentage	Accession
Enterobacter xiangfangensis 16S	Score	score	Cover		Identity	
ribosomal RNA gene, partial sequence						
PUFST126	1587	1587	100%	0.0	99.99	MG371998.1

Table-4. Resistance results from CGE server

Score	Expec-	Temp-	Temp	Template	Query	Query	Depth	Q	р
	ted	late	late	coverage	identity	cover-		value	Value
		length	identity			age			
5685	0	861	99.88	100.12	99.77	99.88	7.15	5684.40	1.0e-26
134	1	861	24.16	29.27	82.54	341.67	0.29	128.47	1.0e-26
220	1	861	27.99	29.04	96.40	344.40	0.29	214.51	1.0e-26
112	1	858	15.62	17.37	89.93	575.84	0.1	106.49	1.0e-24
191	1	861	27.29	29.62	92.16	337.65	0.30	185.49	1.0e-26
	Score 5685 134 220 112 191	Score Expected 5685 0 134 1 220 1 112 1 191 1	Score Expec- ted Temp- late length 5685 0 861 134 1 861 220 1 861 112 1 858 191 1 861	Score Expected Tempere Tempere <thtempere< th=""> Tempere <tht< td=""><td>Score Expec- ted Temp- late Temp late Tempate coverage 5685 0 861 99.88 100.12 134 1 861 24.16 29.27 220 1 861 27.99 29.04 112 1 858 15.62 17.37 191 1 861 27.29 29.62</td><td>Score ted Expec- ted Temp- late late Temp ted Template coverage identity Query identity 5685 0 861 99.88 100.12 99.77 134 1 861 24.16 29.27 82.54 220 1 861 27.99 29.04 96.40 112 1 858 15.62 17.37 89.93 191 1 861 27.29 29.62 92.16</td><td>Score ted Expec- ted Temp- late late Template coverage identity Query identity identity Query coverage age 5685 0 861 99.88 100.12 99.77 99.88 134 1 861 24.16 29.27 82.54 341.67 220 1 861 27.99 29.04 96.40 344.40 112 1 858 15.62 17.37 89.93 575.84 191 1 861 27.29 29.62 92.16 337.65</td><td>Score tedExpec- late lengthTemp late identityTemplate coverage identityQuery identityQuery coverage ageDepth coverage age5685086199.88100.1299.7799.887.15134186124.1629.2782.54341.670.29220186127.9929.0496.40344.400.29112185815.6217.3789.93575.840.1191186127.2929.6292.16337.650.30</td><td>Score tedTemp- late lengthTemp late identityTemplate coverageQuery identityQuery cover- ageDepth value value5685086199.88100.1299.7799.887.155684.40134186124.1629.2782.54341.670.29128.47220186127.9929.0496.40344.400.29214.51112185815.6217.3789.93575.840.1106.49191186127.2929.6292.16337.650.30185.49</td></tht<></thtempere<>	Score Expec- ted Temp- late Temp late Tempate coverage 5685 0 861 99.88 100.12 134 1 861 24.16 29.27 220 1 861 27.99 29.04 112 1 858 15.62 17.37 191 1 861 27.29 29.62	Score ted Expec- ted Temp- late late Temp ted Template coverage identity Query identity 5685 0 861 99.88 100.12 99.77 134 1 861 24.16 29.27 82.54 220 1 861 27.99 29.04 96.40 112 1 858 15.62 17.37 89.93 191 1 861 27.29 29.62 92.16	Score ted Expec- ted Temp- late late Template coverage identity Query identity identity Query coverage age 5685 0 861 99.88 100.12 99.77 99.88 134 1 861 24.16 29.27 82.54 341.67 220 1 861 27.99 29.04 96.40 344.40 112 1 858 15.62 17.37 89.93 575.84 191 1 861 27.29 29.62 92.16 337.65	Score tedExpec- late lengthTemp late identityTemplate coverage identityQuery identityQuery coverage ageDepth coverage age5685086199.88100.1299.7799.887.15134186124.1629.2782.54341.670.29220186127.9929.0496.40344.400.29112185815.6217.3789.93575.840.1191186127.2929.6292.16337.650.30	Score tedTemp- late lengthTemp late identityTemplate coverageQuery identityQuery cover- ageDepth value value5685086199.88100.1299.7799.887.155684.40134186124.1629.2782.54341.670.29128.47220186127.9929.0496.40344.400.29214.51112185815.6217.3789.93575.840.1106.49191186127.2929.6292.16337.650.30185.49

Figure 1a. Single isolates of the bacterium observed under 40x oil immersion light microscope; and under Gram stain

Figure 1b. Opaque and creamy white colonies of the bacterial isolate

Figure 1c. Isolated single colonies of the isolate showing entire and convex morphology

Fig. 2. Bacterial Isolate replicates under incubation with cytochrome oxidase test strips. No colour indicated that the isolates are oxidase negative

(611)

Figure 3. Discs showing the zone of inhibition upon treatment with cephalosporin, ampicillin, tetracycline and erythromycin

Figure 4. PCR amplification of a 16s rRNA using V3 and V4 primers and separation on an agarose gel Lane 1 indicates the amplified product and Lane 2 indicates the marker.

Base quality distribution for Read1

Figure 5. Raw Read summary of the isolated bacterium 16srRNA with Phred Quality Score distribution (%)

(612)

enterobacter hormaechei strain HPCAQ10CR8 16S ribosomal RNA gene, partial sequence

Figure 6. Distance matrix obtained from NCBI BLASTn search

Score 1277 b	oits(69)	1)	Expect 0.0	Identities 812/869(93%)	Gaps 13/869(1%)	Strand Plus/Plu	JS
Query	1	CGTGGG	TAACCTGCC	ATAAGACTGGGATAACT	CCGGGAAACCGGGGCTAA	TACCGGATA	60
Sbjct	80	CGTGGG	AACCTOCCT	TOTAAGACTGGGATAACT	CCGGGAAACCGGGGCTAA	TACCOGATA	139
Query	61	ACAT-T	TTGAACCO	ATGGTTCGAAATTGAAA	SGCGGCTTCGGCTGTCAC	TATGGATG	118
Sbjct	140	ATATCT	ATTTATACAT	TATAATT AGATTGAAA	SATGG-TTCTGCTATCAC	TTACAGATG	196
Query	119	daccod		ACTACTOSTOSTOS	CONCTCACCAAOOCAACO		178
Sbjct	197	GGCCCG	GGCGCATTA	AGCTAGTTGGTGAGGTAA	COGCTCACCAAGGCGACG	ATGCGTAGC	256
Query	179	CGACCTO	SAGAGGGTG	TCGGCCACACTGGGACT	SAGACACGGCCCAGACTC	TACGGGAG	238
Sbjct	257	CGACCT	DTDDDADAD	TCOOCCACACTOGOACT	SAAACACGGCCCAGACTC	DADDDDAT	316
Query	239	GCAGCAG	TAGGGAAT	TTCCGCAATGGACGAAA	STCTGACGGAGCAACGCC	SCGTGAGTG	298
sbjct	317	GCAGCA	STAGGGAAT	TTCCGCAATGGACGAAA	STCTGACGGAACAACGCC	SCGTGAGTG	376
Query	299	ATGAAG	астттсеве	CGTAAAACTCTGTTGTT	AGGGAAGAACAAGTGCTA	AATAADTTE	358
Sbjct	377	ATGAAG	STTTTCGGA	CGTAAAACTCTGTTGTT.	AGGGAAGAACAAGTAC-C	5GAATAA	433
Query	359	GCTG	SCACCTTGA	GGTACCTAACCAGAAAG	CCACGGCTAACTACGTGC	CAGCAGCCG	416
Sbjct	434	стасса	STACCTTOA	COTACCTAACCAGAAAG	CCACGGCTAACTACGTGC	DODDADDAD	493
Query	417	CGGTAA	TACGTAGGT	3GCAAGCGTTATCCGGAA	TTATTGGGCGTAAAGCGC	SCGCAGGTG	476
Sbjct	494	CGGTAA	TACGTAGGT	SGCAAGCGTTGTCCGGAA	TTATTGGGCGTAAAGCGC	SCGCAGGCG	553
Query	477	GTTTCT	TAAGTCTGAT	INTERNANCECCACEGETE	AACCOTOGAGOGTCATTO	DODTDAAAC	536
Sbjct	554	GTTCCT		GTGAAAGCCCACGGCTC	AACCGTGGAGGGTCATTG	SAAACTGGG	613
Query	537	AGACTT	SAGTGCAGA	AGAGGAAAGTGGAATTCC	ATGTGTAGCGGTGAAATG	GTAGAGAT	596
Sbjct	614	GAACTTO	SAGTOCAGA		AAGTGTAGCGGTGAAATG	TADADATD	673
Query	597	ATGGAG	SAACACCAG	GGCGAAGGCGACTTTCT	SGTCTGTAACTGACACTG	AGGCGCGAA	656
sbjct	674	TTGGAG	SAACACCAG	GGCGAAGGCGACTTTCT	SGTCTGTAACTGACGCTG	AAGCGCGAA	733
Query	657	AGCGTG	3GGGAGCAA	ACAGGATTAGATACCCTG	STAGTCCACGCCGTAAAC	SATGAGTGC	716
Sbjct	734	AGCGT-	SGGGAGCAA	ACAGGATTAGATACCCTG	STAGTCCACGCCGTAAAC	SATGAGTGC	792
Query	717	TAAGTG	TAGAGGGT	TCCGCCCTTTAGTGCTG	AAGTTAACGCATTAAGCA	тссвсств	776
Sbjct	793	TAAGTO	TTAGAGGT	TTCCGCCCTTTAGTGCTG	CAGCAAACGCATTAAGCA	тссасста	852
Query	777	GGGAGT	ACGGCCGCA	AGGCTG-AACTCAAAGGA	ATTGACGGGGGGCCCGCAC	AAGCGGTGG	835
Sbjct	853	GGGAGT	ACGACCGCA	AGGTTGAAACTCAAAGGA	ATTGACGGGGGGCCCGCAC	AAGCGGTGG	912
Query	050	AGCATO		тсанааснасаса ва	5		

Figure 7a. Sequence similarity with partial sequence of 16S ribosomal RNA of *Enterobacter hormaechei* strain 0173 (Sequence ID: KP236303.1; Length: 1111)

(6	1	3)
			/

Score 1131 H	its(61	2) Expect 2) 0.0	Identities 713/762(94%)	Gaps 6/762(0%)	Strand Plus/Plus
Query	1	CGTGGGTAACCTGCCC	ATAAGACTGGGATAACTC	CGGGAAACCGGGGCTAAT	ACCGGATA 60
Sbjct	60	CGTGGGTAACCTGCCT	GTAAGACTGGGATAACTC	CGGGAAACCGGGGCTAAT	ACCGGAT - 118
Query	61	ACATT-TTGAACCGCA	TGGTTCGAAATTGAAAGG	CGGC-TTCGGCTGTCACT	TATGGATG 118
Sbjct	119	GCTTGATTGAACCGCA	TGGTTCAATCATAAAAG	TGGCTTTTAGCTACCACT	TACAGATG 178
Query	119	GACCCGCGTCGCATTA	AGCTAGTTGGTGAGGTAAC	GGCTCACCAAGGCAACGA	TGCGTAGC 178
Sbjct	179	GACCCGCGGCGCATTA	AGCTAGTTGGTGAGGTAAC	GGCTCACCAAGGCGACGA	TGCGTAGC 238
Query	179	CGACCTGAGAGGGTGA	ATCGGCCACACTGGGACTG	AGACACGGCCCAGACTCC	TACGGGAG 238
Sbjct	239	CGACCTGAGAGGGTGA	TCGGCCACACTGGGACTG	AGACACGGCCCAGACTCC	TACGGGAG 298
Query	239	GCAGCAGTAGGGAATC	TTCCGCAATGGACGAAAG	TCTGACGGAGCAACGCCG	CGTGAGTG 298
sbjil	299	GCAGCAGTAGGGAATC	TTCCGCAATGGACGAAAG	TCTGACGGAGCAACGCCG	CGTGAGTG 358
Query	299	ATGAAGGCTTTCGGGT	CGTAAAACTCTGTTGTTA	GGGAAGAACAAGTGCTAG	TT-GAATA 357
Sbjct	359	ATGAAGGTTTTCGGAT	CGTAAAACTCTGTTGTTA	GGGAAGAACAAGTACC-G	TTCGAATA 417
Query	358	AGCTGGCACCTTGACG	GTACCTAACCAGAAAGCO	ACGGCTAACTACGTGCCA	GCAGCCGC 417
Sbjct	418	GGGCGGTACCTTGACG	GTACCTAACCAGAAAGCO	ACGGCTAACTACGTGCCA	GCAGCCGC 477
Query	418	GGTAATACGTAGGTGG	CAAGCGTTATCCGGAATT	ATTGGGCGTAAAGCGCGC	GCAGGTGG 477
Sbjct	478	GGTAATACGTAGGTGG	CAAGCGTTGTCCGGAATT	ATTGGGCGTAAAGCGCGC	GCAGGCGG 537
Query	478	TTTCTTAAGTCTGATG	TGAAAGCCCACGGCTCAA	CCGTGGAGGGTCATTGGA	AACTGGGA 537
Sbjct	538	TTTCTTAAGTCTGATG	TGAAAGCCCCCGGCTCAA	CCGGGGGAGGGTCATTGGA	AACTGGGG 597
Query	538	GACTTGAGTGCAGAAG	AGGAAAGTGGAATTCCAT	GTGTAGCGGTGAAATGCG	TAGAGATA 597
Sbjct	598	AACTTGAGTGCAGAAG	AGGAGAGTGGAATTCCAC	GTGTAGCGGTGAAATGCG	TAGAGATG 657
Query	598	TGGAGGAACACCAGTG	GCGAAGGCGACTTTCTG	TCTGTAACTGACACTGAG	GCGCGAAA 657
sbjct	658	TGGAGGAACACCAGTO	GCGAAGGCGACTCTCTG	TCTGTAACTGACGCTGAG	GCGCGAAA 717
Query	658	GCGTGGGGGGAGCAAAC	AGGATTAGATACCCTGGT	AGTCCACGCCGTAAACGA	TGAGTGCT 717
Sbjct	718	GCGT-GGGGAGCGAAC	AGGATTAGATACCCTGGT	AGTCCACGCCGTAAACGA	TAAGTGCT 776
Query	718	AAGTGTTAGAGGGTTT	CCGCCCTTTAGTGCTGAA	GTTAACGC 759	
Sbjct	777	AAGTGTTAGAGGGTTT	CCGCCCTTTAGTGCTGCA	GCAAACGC 818	

Figure 7b. Sequence similarity with partial sequence of 16S ribosomal RNA of *Enterobacter hormaechei* strain LMA108 (Sequence ID: KX856282.1; Length: 818)

Score 776 bi	ts(420)	Expect 0.0	Identities 491/525(94%)	Gaps 6/525(1%)	Strand Plus/Plus
Query	1	CGTGGGTAACCTGCC	CATAAGACTGGGATAACT	CGGGAAACCGGGGCTAA	ACCGGATA 60
Sbjct	15	CGTGGGTAACCTGCC	TGTAAGACTGGGATAACT	CCGGGAAACCGGGGCTAA	TACCGGAT - 73
Query	61	ACATTT-TGAACCGC	ATGGTTC - GAAATTGAAA	GCGGCTTCGGCTGTCAC	TATGGATG 118
Sbjct	74	GGTTGTCTGAACCGC	ATGGTTCAGACA - TAAAA	SGTGGCTTCGGCTACCAC	TACAGATG 132
Query	119	GACCCGCGTCGCATT	AGCTAGTTGGTGAGGTAA	CGGCTCACCAAGGCAACG/	ATGCGTAGC 178
Sbjct	133	GALLEGEGEGEGEATT	AGCTAGTTGGTGAGGTAA	LGGCTCACCAAGGCAACG	ATGCGTAGC 192
Query	179	CGACCTGAGAGGGTG	ATCGGCCACACTGGGACT	GAGACACGGCCCAGACTC	TACGGGAG 238
Sbjct	193	CGACCTGAGAGGGTG	ATCGGCCACACTGGGACT	GAGACACGGCCCAGACTC	TACGGGAG 252
Query	239	GCAGCAGTAGGGAAT	CTTCCGCAATGGACGAAA	STCTGACGGAGCAACGCC	SCGTGAGTG 298
Sbjct	253	GCAGCAGTAGGGAAT	CTTCCGCAATGGACGAAA	STCTGACGGAGCAACGCC	SCGTGAGTG 312
Query	299	ATGAAGGCTTTCGGG	TCGTAAAACTCTGTTGTT	AGGGAAGAACAAGTGCTA	STTGAA-TA 357
Sbjct	313	ATGAAGGTTTTCGGA	TCGTAAAGCTCTGTTGTT	AGGGAAGAACAAGTGCC-	STTCAAATA 371
Query	358	AGCTGGCACCTTGAC	GGTACCTAACCAGAAAGC	CACGGCTAACTACGTGCC/	AGCAGCCGC 417
Shjct	372	GGGCGGCACCTTGAC	GGTACCTAACCAGAAAGC	ACGGCTAACTACGTGCC	AGCAGCCGC 431
Query	418	GGTAATACGTAGGTG	GCAAGCGTTATCCGGAAT	TATTGGGCGTAAAGCGCG	CGCAGGTGG 477
Sbjct	432	GGTAATACGTAGGTG	GCAAGCGTTGTCCGGAAT	TATTGGGCGTAAAGGGCT	CGCAGGCGG 491
Query	478	TTTCTTAAGTCTGAT	GTGAAAGCCCACGGCTCA/	ACCGTGGAGGGT 522	
Sbjct	492	TTTCTTAAGTCTGAT	GTGAAAGCCCCCGGCTCA	ACCGGGGAGGGT 536	

Figure 7c. Sequence similarity with partial sequence of 16S ribosomal RNA of *Enterobacter hormaechei* strain LMA123 (Sequence ID: KX856297.1; Length: 536)

((51	4)
· ·			_

Score 736 bits	(398)	Expect 0.0	Identities 406/409(99%)	Gaps 3/409(0%)	Strand Plus/Plus
Query 4	458	CGTAAAGCGCGCGCG	AGGTGGTTTCTTAAGTCTGA	TGTGAAAGCCCACGGCT	CAACCGTGG 517
Sbjct :	1	CGT-AAGCGCGCGC	AGGTGGTTTCTTAAGTCTGA	TGTGAAAGCCCACGGCT	CAACCGTGG 59
Query S	518	AGGGTCATTGGAAA	ACTGGGAGACTTGAGTGCAGA	AGAGGAAAGTGGAATTC	CATGTGTAG 577
bjct (60	AGGGTCATTGGAAA	ACTGGGAGACTTGAGTGCAGA	AGAGGAAAGTGGAATTC	CATGTGTAG 119
Query S	578	CGGTGAAATGCGTA	AGAGATATGGAGGAACACCAC	TGGCGAAGGCGACTTTC	TGGTCTGTA 637
bjct :	120	CGGTGAAATGCGTA	AGAGATATGGAGGAACACCAG	TGGCGAAGGCGACTTTC	TGGTCTGTA 179
Query 6	638	ACTGACACTGAGG	GCGAAAGCGTGGGGGGAGCAA	ACAGGATTAGATACCCT	GGTAGTCCA 697
sbjct 🗈	180	ACTGACACTGAGG	GCGAAAGCGT-GGGGAGCAA	ACAGGATTAGATACCCT	GGTAGTCCA 238
Query (698	CGCCGTAAACGAT	SAGTGCTAAGTGTTAGAGGGT	TTCCGCCCTTTAGTGCT	GAAGTTAAC 757
Sbjct :	239	CGCCGTAAACGAT	SAGTGCTAAGTGTTAGAGGGT	TTCCGCCCTTTAGTGCT	GAAGTTAAC 298
Query 3	758	GCATTAAGCACTCO	GCCTGGGGAGTACGGCCGCA	AGGCTG-AACTCAAAGG	AATTGACGG 816
Sbjct :	299	GCATTAAGCACTCO	GCCTGGGGAGTACGGCCGCA	AGGCTGAAACTCAAAGG	AATTGACGG 358
Query a	817	GGGCCCGCACAAG	GGTGGAGCATGTGGTTTAAT	TCGAAGCAACGCGAA	865
Sbjct :	359	GGGCCCGCACAAG	GGTGGAGCATGTGGTTTAAT	TCGAAGCAACGCGAA	407

Figure 7d. Sequence similarity with partial sequence of 16S ribosomal RNA of *Enterobacter hormaechei* strain HPCAQ10CR8 (Sequence ID: JQ512965.1; Length: 791)

Figure 8. Dendrogram obtained by cluster analysis of MALDI-TOF MS spectra of five Enterobacter representatives.

variable regions that are genus- or speciesspecific¹⁰. PCR amplification of the 16s rRNA region using V3 and V4 primers yielded a product of size 3 Kb (Fig. 4).

The product was sequenced on a Illumina HiSeq2500 sequencer and depicted 6,60,941 total paired end reads each with a sequence length of 250 bp and an average Phred score of 36.25, indicating a greater probability of a correct base read with 99% accuracy. More than 80% of the total reads have generated a Phred score > Q30, indicating that the error-probability is ≤ 0.001 (Fig. 5).

The GC content of the reads ranged from 30 - 60 % (average of 55.71 %). The base composition of the sample was 21.82 % A, 28.16 % C, 27.55 % G and 22.1 % T respectively. The sequences were submitted (SUB6295766) to NCBI SRA archive database and are available with the accession number SAMN12726439 and experiment number SRX6908940 under the project ID PRJNA564919.

Microbial profiling includes identification of bacteria on the basis of sequence homology and estimation of their percentage environmental¹⁵. The RNA sequences of egg yolk isolated bacteria were submitted to nucleotide BLAST in NCBI database using BLASTn search (Query ID - 1c165050) (Fig. 6), and the matching hits have shown 99.27 % identity with *Enterobacter hormaechii* and *Enterobacter xiangfangensis* (Table-3 and Fig. 7).

The server from Center for Genomic Epidemiology has also identified the genome of the organism as *Enterobacter hormaechei* sub sp. *stegwartii*. The genomic pipeline was able to identify the antibiotic resistance genes in the microbe (Table-4).

For increasing the accuracy and applicability of identifying the bacterial isolate from egg yok, its 16s rRNA was subjected to identification using MALDI-TOF. With three replicate tests, 16s rRNA peptides of the isolate were submitted to the MALDI-TOF analysis, and were identified to be *Enterobacter cloacae* and *Enterobacter asburiae* with a score value of 1.84 as best matches of the test organism and *Enterobacter kobei* with a score value of 1.81 as the second best match (Fig. 8).

MALDI-TOF is an alternative method for the identification of 16S rRNA due to its favorable speed and applications. Sung *et al.*¹⁹ used 16s rRNA to identify three of *Aeromonas* species - *A. hydrophila*, *A. caviae*, and *A. veroniii*.

Through this study, bacterium isolated from the egg yolk was identified to be a species of *Enterobacter* with a high possibility of *E*. hormaechei. Identification was attempted in three different ways - classical methods, NCBI BLASTn and the more recent MALDI-TOF. While the classical methods for species level identification are arduous, PCR based BLASTn and mass spectra based MALDI-TOF were able to identify the genus and species within few seconds. The results obtained from modern methods are acceptable up to genus level. Species level identification disagreed in these methods and therefore poses as an important need of the hour. This study highlights the importance of establishing a database consensus at a time when mapping of bacterial evolution and prevalence has emerged as an important task in all countries. This study highlights the importance of GMP in poultry industry and the resilient way in which pathogenic and antibiotic resistant bacteria are still ending up in our food chain. Food mapping and emerging pathogen mapping shall be helpful to prevent contamination of foods.

This work was supported by the University Grants Commission [F.15-1/2016-17/PDFWM-2015-17-TAM-30680 (SA-II)] funding awarded to the first author.

Conflict of Interest :

The authors declare no competing interests.

References :

- 1. Abdullah, I.N. (2010) *Al-Anbar J. Veter. Sci.*, *3*(2): 59-67.
- Anita, P., D. Kusum, S. Avinash, P. Payal, S. Priyanka, and K. Bhavesh, (2015) *Ann Microbiol.*, 65: 809–816.
- Ashish, K.J., Y. Rajesh, (2016) Intl. J. Poultry Sci., 15(6): 245-253.
- 4. Cerceo, E., S.B. Deitelzweig, B.M. Sherman, and A.N. Amin, (2016) *Microbial Drug Resis.*, 22(5): 412–431.
- 5. Clayton, Z.S., E. Fusco, and M. Kern (2017) *Nutrition.*, *37*: 79-85.
- De Reu, K., T.B. Rodenburd, K. Grijspreerdt, M. Heyndrickx, F.A.M. Tuyttens, B. Sonck, J. Zoons, and L. Herman, (2009) *Poultry Sci.*, 88: 2442– 2448.
- Diene, S.M., and J.M. Rolain, (2014) Clin Microbiol Infect., 20: 831–838.
- 8. Iredell, J., J. Brown, and K. Tagg, (2016) British Medical Journal, 352: 6420.
- 9. Jain A.K., and R. Yadav, (2016) Intl. J. Poultry Sci., 15(6): 245-253.

- Jenkins, C., C.L. Ling, H.L. Ciesielczuk, J. Lockwood, S. Hopkins, T.D. McHugh, S.H. Gillespie, C.C. Kibbler, (2012) *J Med Microbiol.*, 61(4): 483-488.
- 11. Jones, D.R., and M.T. Musgrove, (2007) *J Food Prot.*, 70(9), 2004-2007.
- Kali, A., S. Srirangaraj, and P.A Charles, (2015) *Indian J Med Microbiol.*, *15*(3): 293-295.
- Kreig, N.R. and J.G. Holf (1984). Bergey's Manual of Systematic Bacteriology. William and Wilkins, Baltimore, USA.
- 14. Matar, G.M. (2017) *Front. Microbiol.*, 8: 509.
- Quang, T., P. Diem-Trang and P. Vinhthuy, (2017) *BMC Bioinformatics.*, *18*(14): 499-514.
- Roberto, V., A. Ana, S.D. Silvio and J. Sona (2019) *Microbial Drug Resis.*, 25(6): 890–908.
- Rodloff, A., T. Bauer, S. Ewig, P. Kujath, and E. Müller, (2008) *Dtsch Arztebl Int.*, *105*(39): 657-662.
- Sophia, D., C. Victoria, R. Sandra, E.S. Anna, G. Tommaso and P. Julian (2020) *Proceedings of the Natl. Acad. of Sci.*, *117*(40): 25043-25054.
- Sung, H.A., W.K. Jeong, H.M. Jeong, P.K. Kwang, H.L. Seong and S.K. Myung (2015) *J Mass Spectrum.*, 50(3): 596-602.
- 20. Syahri, Y., F. Baharuddin, A. Fachruddin, and A. Yani, (2019) *Earth and Environ Sci.*, *382*: 012020.
- Techer, C., F. Baron, and S. Jan, (2014). Spoilage of animal products: Microbial Spoilage of Eggs and Egg Products. In Carl A. Batt, Mary Lou Tortorello, (Ed.), Encyclopedia of Food Microbiology (Second Edition), Academic Press, pp 439-445, ISBN 9780123847331.